軟體安裝、效能測試及調校

國立臺灣師範學物理學系 陳俊明

chunming@ntnu.edu.tw

- VASP
- Quantum Espresso
- LAMMPS
- MATLAB
- Gaussian

應用軟體安裝-Python3

• 安裝相關套件

[root@master ~]# yum groupinstall "Development tools" [root@master ~]# yum install zlib-devel bzip2-devel openssl-devel ncurses-devel sqlite-devel readlinedevel tk-devel

• 下載python3.12

[root@master ~]# wget https://www.python.org/ftp/python/3.12.5/Python-3.12.5.tgz [root@master ~]# tar zxvf Python-3.12.5.tgz [root@master ~]# cd Python-3.12.5 [root@master Python-3.12.5]# ./configure --prefix=/opt/python3.12

• 使用python3.12

[root@master ~]# export PATH=/opt/python3.12/bin:\$PATH [root@master ~]# export LD_LIBRARY_PATH=/opt/python3.12/lib:\$LD_LIBRARY_PATH

效能測試軟體

- HPL : https://www.netlib.org/benchmark/hpl/
- HPCG : https://www.hpcg-benchmark.org/
- HPC Challenge : <u>http://icl.cs.utk.edu/hpcc/</u>
- STREAM : <u>https://www.cs.virginia.edu/stream/</u>
- SPEC : <u>https://www.spec.org/</u>
- Phoronix Test Suite : <u>https://www.phoronix-test-suite.com/</u>
- MGBench : <u>https://github.com/tbennun/mgbench</u>

程式的 Benchmark

使用已知的計算實例,在不同數量 的節點跟計算核心進行測試,並將 測試的結果繪圖。

- 測試過程中,同時檢查每一計算 步驟的結果
- 檢查最後結果的一致性
- 檢查收斂的過程
- 檢查計算的時間
- 根據"節點數"以及"計算核心" 數跟計算時間繪圖

HPL 安裝

• 安裝OpenBLAS

[root@master ~]# yum install openblas openblas-devel

前往 <u>https://www.netlib.org/benchmark/hpl/</u>下載,並且解壓縮 hpl-2.3.tar.gz

[user1@master ~]# wget https://www.netlib.org/benchmark/hpl/hpl-2.3.tar.gz [user1@master ~]# tar zxvf hpl-2.3.tar.gz [user1@master ~]# cd hpl-2.3 [user1@master hpl-2.3]# export PATH=/opt/openmpi/4.1.6_gnu_8.5/bin:\$PATH [user1@master hpl-2.3]# export LD_LIBRARY_PATH= =/opt/openmpi/4.1.6_gnu_8.5/lib:\$ LD_LIBRARY_PATH [user1@master hpl-2.3]# ./configure --prefix=/home/user1/hpl CC=mpicc [user1@master hpl-2.3]# make -j < number of processor > && make install

HPL 安裝

• 手動安裝方式,編輯 Make.XXX 檔案,進行編譯安裝

[user1@master ~]# source /opt/intel/oneapi/setvars.sh intel64 [user1@master ~]# cd hpl-2.3 [user1@master hpl-2.3]# cp setup/Make.Linux_Intel64 [user1@master hpl-2.3]# vi Make.Linux_intel64

TOPdir = \$(HOME)/hpl-2.3 CC = mpiicx OMP_DEFS = -qopenmp CCFLAGS = \$(HPL_DEFS) -O3 -w -ansi-alias -static-intel -z noexecstack -z relro -z now –Wall

[user1@master hpl-2.3]# make arch= Linux_intel64 [user1@master hpl-2.3]# cd bin/Linux_intel64

HPL 設定與調教

- FLOPS : floating point operations per second.
- R_{peak}: the theoretical peak performance GFLOPS for the machine.
- R_{max}: the performance in GFLOPS for the largest problem run on a machine.

R_{peak} = (CPU speed in GHz) x (number of CPU cores) x (CPU instruction per cycle) x (number of CPUs per node)

Intel Gold 6130, 16 cores, 2 CPU						
ISA	Base Frequency	Turbo Frequency	# of flops per cycle			
AVX512	2.1 GHz	3.2 GHz	32			

 $R_{peak} = 16 \times 3.2 \times 32 \times 2 = 3276.8$ GFLOPS

HPL 設定與調教

Microarchitecture	♦ ISA ♦	FP64 +	FP32 4	♦ FP16 ♦
	Intel CPU			
Intel Netburst Pentium 4 (Prescott, Cedar Mill) Intel Netburst Pentium D (Smithfield, Presler) Intel P6 Core (Yonah)	SSE3 (64-bit)	2	4	?
Intel Core (Merom, Penryn) Intel Nehalem ^[10] (Nehalem, Westmere)	SSSE3 (128-bit) SSE4 (128-bit)	4	8	?
Intel Atom (Bonnell, Saltwell, Silvermont and Goldmont)	SSE3 (128-bit)	2	4	?
Intel Sandy Bridge (Sandy Bridge, Ivy Bridge)	AVX (256-bit)	8	16	0
Intel Haswell ^[10] (Haswell, Devil's Canyon, Broadwell) Intel Skylake (Skylake, Kaby Lake, Coffee Lake, Comet Lake, Whiskey Lake, Amber La	(e) AVX2 & FMA (256-bit)	16	32	0
Intel Xeon Phi (Knights Corner)	IMCI (512-bit)	16	32	0
Intel Skylake-X (Skylake-X, Cascade Lake) Intel Xeon Phi (Knights Landing, Knights Mill) Intel Ice Lake, Tiger Lake and Rocket Lake	AVX-512 & FMA (512-bit)	32	64	0
	AMD CPU			
AMD Bobcat	AMD64 (64-bit)	2	4	0
AMD Jaguar AMD Puma	AVX (128-bit)	4	8	0
AMD K10	SSE4/4a (128-bit)	4	8	0
AMD Bulldozer ^[10] (Piledriver, Steamroller, Excavator)	AVX (128-bit) Bulldozer-Steamroller AVX2 (128-bit) Excavator FMA3 (Bulldozer) ^[11] FMA3/4 (Piledriver-Excavator)	4	8	0
AMD Zen (Ryzen 1000 series, Threadripper 1000 series, Epyc Naples) AMD Zen+ ^{[10][12][13][14]} (Ryzen 2000 series, Threadripper 2000 series)	AVX2 & FMA (128-bit, 256-bit decoding) ^[15]	8	16	0
AMD Zen 2 ^[16] (Ryzen 3000 series, Threadripper 3000 series, Epyc Rome)) AMD Zen 3 (Ryzen 5000 series, Epyc Milan)	AVX2 & FMA (256-bit)	16	32	0

HPL 設定與調教

HPLinpack	HPLinpack benchmark input file						
Innovative	e Computing Laboratory, University of Tennessee						
HPL.out	HPL.out output file name (if any)						
6	<pre>device out (6=stdout,7=stderr,file)</pre>						
1	# of problems sizes (N)						
29184	Ns						
1	# of NBs						
192	NBs						
0	PMAP process mapping (0=Row-,1=Column-major)						
1	# of process grids (P x Q)						
2	Ps						
4	Qs						
16.0	threshold						
1	# of panel fact						
2	PFACTs (0=left, 1=Crout, 2=Right)						
1	<pre># of recursive stopping criterium</pre>						
4	NBMINs (>= 1)						
1	# of panels in recursion						
2	NDIVs						
1	# of recursive panel fact.						
1	RFACTs (0=left, 1=Crout, 2=Right)						
1	# of broadcast						
1	BCASTs (0=1rg,1=1rM,2=2rg,3=2rM,4=Lng,5=LnM)						
1	# of lookahead depth						

• $N = \sqrt{\frac{\text{total mem size}(byte)}{8}} \times 0.8$

- NB 值:在網格 (grid) 內的區塊 (block) 大小,經過實際測試來得到最佳,值通常小於384。
 建議測試:96,104,112,128,...,196,256,384
- P×Q表示二维处理器網格(grids),P表示水平方向處理器個數,Q表示垂直方向處理器個數
- P、Q兩個相乘等於預計使用核心數,建議 P <= Q、P = 2ⁿ

最佳化 N 值:通常把 N 值與 NB 值標齊對正,就可以找出最價值。以上面 64GB 記憶體為例,假設要測試的 NB 是 224,以 N 值除以 NB 值 (82,897 / 224 ~= 370) 後乘以 NB 值 (370 * 224 = 82,880),就可以找出最佳化 N 值

HPL 執行

• 編輯好 HPL.dat 檔案後,直接執行

[user1@master ~]\$ cd hpl/bin [user1@master bin]\$ vi HPL.dat [user1@master bin]\$ mpirun -np <number of processor> ./xhpl

Τ/V		Ν	NB	P)	Q		Time	Gflops
WR11C2R4	2016	60 3	192	2	2	2		457.72	1.1935e+01
HPL_pdgesv()	start	time	Fri	Aug	11	23:35:35	2023		

HPL_pdgesv() end time Fri Aug 11 23:43:14 2023

HPCG 安裝

前往<u>https://www.hpcg-benchmark.org/</u>下載,並且解壓縮 hpcg-3.1.tar.gz

[user1@master ~]\$ wget http://www.hpcg-benchmark.org/downloads/hpcg-3.1.tar.gz

[user1@master ~]\$ tar zxvf hpcg-3.1.tar.gz

[user1@master ~]\$ mkdir ~/hpcg

[user1@master ~]\$ source /opt/intel/oneapi/setvars.sh intel64

[user1@master ~]\$ cd ~/hpcg

[user1@master hpcg]\$ /home/user1/hpcg-3.1/configure Linux_MPI

[user1@master hpcg]\$ vim setup/Linux_MPI

CXX = mpicxx

CXXFLASG = \$(HPCG_DEFS) -O3 - ffast-math - ftree-vectorize

[user1@master hpcg]\$ make

HPCG 設定及執行

● 設定 HPCG.DAT 檔案

- ### ### ###:此為矩陣大小,該數字為8的倍數。數字越大使用記憶體 越多,建議調整到使用記憶體的60%~80% ###:運算時間,單位為秒,要跑30分鐘以上才能測出效能,建議值 3600
- 編輯好 HPCG.DAT 檔案後,直接執行

[user1@master bin]\$ mpirun -np <number of processor> ./xhpcg

系統調校技巧

- BIOS 關閉 Hyper Threading
- BIOS 的 Power 設定為 Maximum Performance
- 如果系統碟是使用 HDD 設定 RAID 0,或是改使用 SSD / NVMe 不設定 RAID
- 避免將記憶體完全吃滿,關閉 swap 或避免使用 swap
- 確保使用者每次執行完程式能清除記憶體
- 確保節點對節點能跑接近網路理論值

程式錯誤狀況排除

- 仔細的看錯誤訊息
- 是否能夠重現程式的錯誤?
- 透過指令能夠幫助縮小範圍:
 - 確認環境變數: echo, ifort, icc, ldd, which, ompi_info
 - 確認記憶體的使用量:free-m, vmstat
 - 確認 I/O 的狀態: netstat -an, iostat, sar -n DEV 1 10, df -hT /tmp
 - 確認計算時的負載: uptime, top
 - 確認 Kernel 的訊息:dmesg | tail -n 100 > ~/klog
- 使用者回報錯誤時,一定要要求提供至少4個訊息 (4W)
 - Who: 哪一個帳號?
 - Where:哪一台機器?哪一個節點?工作路徑?程式路徑?
 - When:什麼時候發生?
 - What:從輸出檔看到什麼錯誤訊息或是沒有錯誤訊息?